Symbiotic ciliates and bacteria have a common ancestor
Ciliates, just like humans, are colonized by a vast diversity of bacteria. Some ciliates and their bacterial symbionts have become friends for life, as researchers from the Max Planck Institute for Marine Microbiology in Bremen demonstrated by comparing a group of these single-celled ciliates and their bacterial partners from the Caribbean and the Mediterranean Seas. The bacteria provide their ciliate hosts with nutrition by oxidizing sulfur. Surprisingly, they found that this partnership originated once, from a single ciliate ancestor and a single bacterial ancestor, although a whole ocean separates the sampling sites.
In their study, Brandon Seah from the Max Planck Institute for Marine Microbiology and colleagues describe the partnership between ciliates of the genus Kentrophoros, which have lost their mouth opening and the symbiotic sulfur oxidizing bacteria that they depend on. This type of symbiosis is termed mutualism, i.e. both partners depend on each other.
Varying appearance, similar genetics
In their study, the researchers compared Kentrophoros species from the Caribbean and the Mediterranean Seas. The researchers found 17 species of Kentrophoros that are all related to each other, that share the same basic body plan even though each has their own unique features. Although the overall appearance varied, DNA sequence analysis showed that the ciliates all originated from a single common ancestor. This was also the case for the bacteria, which all belonged to one group of close relatives from a lineage that is new to science.
This means that at some point millions of years ago, the first Kentrophoros and the ancestor of these bacteria formed a partnership that has endured through the years, and their descendants are now found around the world. “The bacterial symbionts grow only on one side of the ciliate’s body. Some ciliates have special folds in order to increase the area for optimal growth. These ciliates carry their personal vegetable patch that they harvest by phagocytosis,” explains Brandon Seah, PhD student at the Max Planck Institute for Marine Microbiology.
Nicole Dubilier, Director at the Max Planck Institute in Bremen, adds:“ One of the surprising results of our study was that the partnership between the ciliates and their symbionts has been highly stable and specific over a very long evolutionary time period, perhaps tens to hundreds of millions of years. We assumed that because the symbionts sit on the outside of their hosts and could be easily lost when the ciliates move through water or sand, that these symbioses might not be as specific as ones in which the symbionts live inside their hosts. But it turns out that the physical location of partners is not necessarily related to their intimacy.”
The next step on the agenda is genome sequencing of the bacterial symbionts and their hosts. Also, cultivation of the ciliates and their symbionts would open the door for future studies on what contributions each partner in this symbiotic team brings to their relationship.
The study is published in Proceedings of the Royal Society B: Biological Sciences.
Source: Max Planck Society [July 14, 2017]
Comments
Post a Comment